Temporal Tables in SQL Server 2016

SQL Server 2016 has provided with the new temporal table support which tracks the history
of all the data changes to a table. With Temporal tables SQL Server is able to store all the
older data records into in a history table while keeping the current records in the original
table. In this article we will explore using the temporal table feature of SQL Server 2016 to
create a history table.

What Is a Temporal Table?

A temporal table is just another SQL Server table that contains the old rows for a
corresponding SQL Server table. A temporal table is a new type of table that provides
correct information about stored facts at any point in time. It is basically just a history table
of old rows. Each temporal table consists of two tables actually, one for the current data
and one for the historical data. Every time an existing record is updated, the old row is
placed in the associated temporal table automatically. A temporal table can also be called a
history table. Using this new feature in SQL Server 2016 means you can now track changes
to a table overtime without having to write any application logic. SQL Server will place the
older rows in the temporal tables automatically.

sQL Server manages the movement of records between the original table and the temporal
history table. The original table and the temporal table contain a set of period
columns. The period columns, consist of a begin date and an end date column for the
record. These two dates represent the period of time that a record is active, and are
defined as datetime2 columns. When a record is updated the SQL Server engine
automatically updates the end date on the record being updated to the current UTC time,
and then moves the existing record to the temporal table. When your application creates a
new record in the normal or original table the period begin date is set to the UTC time based
on a default value for the column, and then the end date is set to the default value for the
end date column.

Implementation

To better understand how this works let me show you an example.

We have Users table in our SQL Server 2016 database. The Users table contains user details
and the status of each user i.e. active or disabled. We would like to store the old versions of
rows in the Users table. By keeping older versions of records we will be able to track the
user status changes over time.

Current Users Table

In order to demonstrate how to use a temporal table to track the changes to the Users table
over time, we will first need to create the Users table and populate it with some rows of
data. To create and populate the Users table let’s use the following code:
CREATE TABLE [dbo].[Users](

[user_id] [int] IDENTITY(1,1) NOT NULL,

[login_id] [varchar](5@) NOT NULL,

[full_name] [varchar](5@) NOT NULL,

[disabled] [char](1) NOT NULL,
CONSTRAINT [PK_Users] PRIMARY KEY CLUSTERED

(
[user_id] ASC
YWITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

INSERT INTO [dbo].[Users] VALUES
('Dev6test606', ' LORI WENGER-HANSEN','N'),
('Devetest613’, 'DIVYAKANT AGRAWAL', 'N"),
('Dev6test625','KATHLEEN M LELEVIER','N'),
('Devéetest626', 'BETTY EMMONS', 'N")

GO

In this code | created a table named dbo.Users and then populated it with four different

users.

Setting up Temporal Data on Users Table

In order to start collecting historical information for our dbo.Users table, we will need to
alter the table so it will support temporal data. A SQL Server 2016 temporal table requires a
table to have a primary key and a couple of date/time columns. The primary key is needed
to be able to match records from the dbo.Users table and the temporal table. The two
date/time columns will be used to determine the period of time for when the record is
valid. Therefore the first thing we need to do is alter our Users table to meet the temporal
data table requirements. To do that let’s run the following code:

ALTER TABLE [dbo].[Users]

ADD [BeginDate] datetime2 GENERATED ALWAYS AS ROW START NOT NULL
DEFAULT SYSUTCDATETIME(),
[EndDate] datetime2 GENERATED ALWAYS AS ROW END NOT NULL

DEFAULT CAST('9999-12-31 23:59:59.9999999' AS datetime2),
PERIOD FOR SYSTEM_TIME (BeginDate,EndDate);

Here you can see that we have created two date columns named BeginDate and EndDate.
These two fields identify a time period when the Users table record is valid. Note that we
have set the BeginDate column value to the current data/time, in UTC format and then
EndDate to a date/time that is way into the future. The reason | used UTC is because

support for the temporal table time period is based on UTC time and not the current time
zone of the SQL Server instance.

The next step in setting up a temporal table is to identify a history table that goes along with
our dbo.Users table. To do that let’s run the following code:

ibo].[Users]

TEM VERSIONING = ON (HISTORY_TABLE = dbo UsersHistory));

Here you can see that the table named dbo.UsersHistory would be our system versioned
temporal table. Go to Object Explorer in SQL Server Management Studio (SSMS) to see how
we can identify that the dbo.Users table now has a history table associated with it. Below is
what we can notice when we browse our database:

=ERY | ‘
@ [Database Diagrams
= [Tables
{4 System Tables
[FileTahles
[External Tahles
= 1 dhoUsers (System-Versioned)
_iq dbo.UsersHistory (History]
3 Columns
@ 3 Keys
@ L Canstraints
@ 3 Triggers
@ 3 Indexes
[[Statistics

Note that our dbo.Users table now says it is a “System-Versioned” table. Additionally there
is a new node under the dbo.Users table that identifies the “History” table dbo.UsersHistory.

Expand the history table named dbo.UsersHistory. Below you can see the definition for the
history table in SSMS:

= 0
7 [Database Diagrams
= [Tables
{1 System Tables
[FileTables
[External Tables
= 1 dbo.Users (System-Versioned)
= % dbo.UsersHistory (History)
= 4 Columns
=] user_id (int, not null)
=] login_id (warchar(30), not null)
£] full_name (varchar(30), not null)
=] disabled (char(1), not null)
=] BeginDate (datetime2(7), not null)
Z] EndDate (datetime2(7), not null)
@ [y Constraints
| Indexes
) | Statistics
= [Columns
¥ user_id (PK int, not null)
] login_id (varchar(30), nat null)
(£] full_name (varchar(50), not null)
=] disabled (char(1), not null)
[£] BeginDate (datetime2(7), not null)
[£] EndDate (datetime2(7), not null)
@ 1 Keys
[Constraints
[Triggers
i 4 Indexes
[Statistics

m

|

Here you can see that the history table looks exactly like the dbo.Users table. At this point
we can actually select data from this history table. But since we have yet to update, or
delete an existing row from the dbo.Users table there are no records in the history table.

Processing Update Statement against a “System-
Versioned” Table

In order to see how a temporal table can hold the history records let us perform an UPDATE
statement against dbo.Users table. To perform that update we will be using the following
script:

UPDATE [dbo].[Users]

SET [disabled] = 'Y’
WHERE login_id = 'Dev6test606’;

When we run the following code we will get the following output:
SELECT * FROM [dbo].[Users];

SELECT GETDATE() CurrentTime, GETUTCDATE() UTC Time;

SELECT * FROM [dbo].[UsersHistory];

] Results |3 Messages

user_id login_id full_name disabled BeginDate EndDate
i I ! DevBestsl5 LORIWENGER-HANSEN Y 2016-08-04 2258:03.5368488 9999-12-31 23:53:59.9393999
2 " DevBest613 DIVYAKANT AGRAWAL N 2016-08-04 04.53:54 7532304 9999-12-31 23:53:53.9399999
3 3 DevBiest625 KATHLEEN M LELEVIER N 2016-08-04 04:53:54.7532304 9999-12-31 23:53:53.9399599
4 Dev&est626 BETTY EMMONS N 2016-08-04 04:53:54 7532304 §999-12-31 23:53:59.9399399
CumentTime UTCTime

1| 2016-08-04 16:00:08.667 { 2016-08-04 23:00:08.667

user_id login_id ful_name disabled BeginDate EndDate

| DevBest6ll6 LORIWENGER-HANSEN N 2016-08-04 04:53:54.7532304 2016-08-04 22:58:03.5368488

If you look at the code above you can see that we first displayed all the records in
the dbo.Users table. Here you can see the updated disabled field value. We then displayed
the local and UTC time, followed by the data from the temporal data table dbo.UsersHistory.
The data displayed from the temporal table was the old user record prior to updating it. As
you can see SQL Server automatically set the EndDate on this record to the current UTC
date. Remember this is not the local time on our SQL Server machine. This is because
temporal data uses UTC dates when calculating the end date of a record. If you compare
the UTCTime column that we displayed with the EndDate you can see they are close to the
same time, whereas the CurrentTime column is very different, and represents the local time
on our machine.

Displaying Period Values in Local Time Format

Remember the begin date and end dates for our temporal tables are updated with the UTC
time, and not the local time zone of the SQL Server machine. When looking at date ranges
for temporal tables it might be nice to be able to display the period begin and end date in
local time. To accomplish this let’s run the following code:

SELECT login_id, [dis:

DATEADD(mi, DATE i, GETUTCDATE(), GETDATE()), BeginDate)
sinDate_Local
Begi
DATEADD(mi, DATEDIFF(mi, GETUTCDATE(), GETDATE ()), EndDate)
AS EndDate_Local
EndDate
FROM [dbo].[UsersHistory];

When we run this code we will get the following output:

[Results |y Messages
i dissbled BeginDate_Local BeginDate EndDate_Local EndDate
iN 2016-08-03 21:53:54 7532304 2016-08-04 04:53:54.7532304 2016-08-04 15:58:03.5368488 2016-08-04 22:58:03.5368488

If you review the output above you will see that the BeginDate_Local and
the EndDate_Local will ~ represent the local time on our machines, whereas
the BeginDate and EndDate columns contain the UTC time.

Limitations of Temporal Tables

Remember this is the first version of temporal table support. Like any new version feature
there are a number of limitations for temporal tables. This is a partial list of some of those

limitations:

e History tables need to be created on the same database as the table that is being
versioned.

e You are not able to truncate the history table.

e You are not allowed to modify the rows of data in the history table with an INSERT,
UPDATE, and DELETE statement.

e History tables cannot have a primary key, foreign key, or column constraints.

Track Your Data Table Changes with Temporal Tables

Having a historical temporal data table that is automatically populated with data is a great
feature. This keeps you from having to write the code for the period date range
values. You are able to track the changes of individual rows over time by having temporal
tables. Having history records in the temporal table allows you to historically determine
what a record looked like for any given time period in the past. If you are looking for adding
a history table in the future, consider whether or not a temporal table will provide you the
functionality you need to track how a record changes over time.

References

https://msdn.microsoft.com/en-nz/library/dn935015.aspx

https://msdn.microsoft.com/en-us/library/mt631669.aspx

https://msdn.microsoft.com/en-US/library/mt604468.aspx

https://msdn.microsoft.com/en-us/library/mt604469.aspx

