Temporal Tables Part 2 - Creating and
Deleting System-Versioned Tables

In this article | will show you how to create and deleted system-versioned tables and the
associated history temporal tables.

Business Situation

Our Management is keen on using the new temporal table support feature introduced in
SQL Server 2016 which tracks the history of all the data changes to a table as part of their
new RDC Limit Tier functionality we are building. One of the first tables they want to create
that will track historical data is a table named dbo.RDCLimitTier. This table will contain the
RDC Limit Tier of the current users. By using the historical temporal data support in SQL
Server 2016, management will be able to track RDC Limit Tier changes for the users over
time. By creating this system-versioned table using the new temporal data table the
application will be able to track users RDC Limit Tier changes over time.

RDC Limit Tiers

Tier ID , Tier Name Limit Per Day ($)
0 Tier 0 0

1 Tier 1 1000

2 Tier 2 2500

3 Tier 3 5000

4 Tier 4 10000

Creating a System-Generated History
Table

A system-generated history table is a table that is automatically named by SQL Server when
it is created. The following CREATE TABLE script will create a history table with a system
generated name:

CREATE TABLE [dbo].[RDCLimitTier](
[UserID] [int] NOT NULL PRIMARY KEY CLUSTERED,
[TierID] [int] NOT NULL,

[BeginDate] datetime2 GENERATED ALWAYS AS ROW START NOT NULL,
[EndDate] datetime2 GENERATED ALWAYS AS ROW END NOT NULL,
PERIOD FOR SYSTEM_TIME ([BeginDate], [EndDate]))

WITH (SYSTEM_VERSIONING = ON);

Here we created a table named RDCLimitTier. Note that we didn’t specify the name of the
history table. All we specified was the “WITH (SYSTEM_VERSIONING = ON)” specification.

If you look at the Object Explorer details in SQL Server Management Studio (SSMS), after
creating this table we can see the system generated temporal data history table. Here is an
image of the Object Explorer output:

[# [Database Diagrams
= [Tables
[[System Tables
{1 FileTables
[External Tables
=] dbo.RDCLimitTier (System-Versioned)
= % dbo.MSSOL_TemporalHistoryFor_725577623 (History)
= 4 Columns
'Z] UserlD (int, not null)
'£] TierlD (int, not null)
=] BeginDate (datetime2(7), not null)
£] EndDate (datetime2(7), not null)
|1 Constraints
[Indexes
[Statistics
= 1 Columns
}3 UserlD (PK, int, not null)
=] TierlD (int, not null)
=] BeginDate (datetime2(7), not null)
=] EndDate (datetime2(7), not null)
@ 3 Keys
|1 Constraints
& [Triggers
@ [Indexes
(¥ [Statistics

As you can see the table dbo.RDCLimitTier is identified as a “System-Versioned” table. This
tells us that there is a history table associated with this table. The second line of output in
the above screenshot shows the actual history table that was created. For this example that
table name is dbo.MSSQL_TemporalHistoryFor_725577623.

Dropping a System-Versioned Table
and the Associated Historical Table

| personally don’t like system generated names. As you can see in the prior example above,
the historical temporal data table created by the system is not the easiest to

remember. Therefore instead of using the system-generated table name as in the above
example, | will drop the system generated history table and the associated temporal table.

You might be thinking that you can delete a system-generated history table and its
associated table by right-clicking on the system-versioned table name, in Object Explorer
and then just right clicking the “Delete” menu item. If you think that you’'d be wrong. Here
is what you see when you do a right-click on the dbo.RDCLimitTier table:

= | J PSTest
i# |y Database Diagrams
= [Tables
@ [System Tables
| FileTables
[External Tahles

= d.SQ_TwporalHlstrch New System-Versioned Table...
= [Columns Select Top 1000 Rows
=] UserlD (int, not null) Edit Top 200 Rows
B TIET!D (int, not I'IL.I”) T ,
=] BeginDate (datetime2(7)
=] EndDate (datetime2(7), 1 V'EW erendencies ‘
[Constraints Eull ki Ny
[Indexes .
[[Statistics Storage 4
= [Columns Policies R
¥ UserlD (PK int, not null)
=] TierlD (int, not null) Fac?ts
=] BeginDate (datetime2(7), nc Start PowerShell
Z] EndDate (datetime2(7), not ; e
@ [Keys Reports 4
1 Constraints vRenzvime -
@ [Triggers -
@ | Indexes Refresh

[Statistics Properties
As you can see from the menu above there is no delete option displayed when you clicked
on the dbo.RDCLimitTier table. So how do you delete a system-versioned table?

It is not a single statement process to delete a system-versioned table. To generate the
statements necessary to delete the dbo.RDCLimitTier table, right click on the table; select
the “DROP to” scripting option to the new query editor window as shown below.

= PSTest

& |3 Database Diagrams
= (3 Tables

& (4 System Tables
(3 FileTables

New System-Versioned Table...
= [Columns | Select Top 1000 Rows
=] UserlD (int, not null) | Edit Top 200 Rows
'] TierlD (int, not null)
=] BeginDate (datetimez

Script Table as 3 CREATE To

=] EndDate (datetime2(7 View Dependencies ALTER To
@ [@ Constraints Full-Text index » DROP To » 3 New Query Editor Window
(3.l Indexes —— : DROP And CREATETo » |4 o
@ [Statistics | Storage 4 = il & File..
=) r = v - = SELECT T [i
= FPIumns) i Polidies ¥ o -t Clipboard
¢ UserD (PK int, not null) i Fisis INSERT To » _3'; AgentJob ...
i:l] 'l'leriD[fnL (ndot nul[)ezm 5 -)) . UPDATE To >
Z] BeginDate (datetime2()), Start PowerShell
2] EndDate (datetime2(7), n. = i DEEFEC ;
@ 3 Keys B Reports > EXECUTE To
™ [;J Constraints | Redariie
@ [Triggers
1 Indexes | Refresh
@ [Statistics Properties

— 5 Views

After selecting the “DROP to” option the following script was placed in the new query editor

window:

USE [PSTest]

GO

/¥*¥¥%% Object: Table [dbo].[RDCLimitTier] Script Date: 8/10/2016 9:07:45 PM
i‘:kx"?’.':k/

ALTER TABLE [dbo].[RDCLimitTier] SET (SYSTEM_VERSIONING = OFF)

GO

/¥*¥¥%% Opject: Table [dbo].[RDCLimitTier] Script Date: 8/10/2016 9:07:45 PM
‘4’?‘4#'&-#-’/

DROP TABLE [dbo].[RDCLimitTier]

GO

/¥¥¥¥%% Object: Table [dbo].[MSSQL_iTempor‘a1Histor—yFovj2557'7623] Script Date:
8/10/2016 9:07:46 PM *¥¥¥x%/

DROP TABLE [dbo],[MSSQL_TemporalHistor’*yFor‘=725577623]

GO

Here you can see that first we have to ALTER the table dbo.RDCLimitTier to set the system
versioning to off. As soon as we perform that ALTER statement, the dbo.RDCLimitTier table

is no longer versioned, but the history
table dbo.MSSQL_TemporalHistoryFor_725577623 becomes real table. This can be seen in
the following SQL Server Object Explorer window:

= | | PSTest
¥ [Database Diagrams
=R | ‘.'T‘a‘lA.ileé
@ [System Tables
@ [FileTables
[External Tables
= = db0.MSSQL_TemporalHistoryFor_?ZSS??BB
@ - dbo.RDCLimitTier
1 Views
@# [External Resources
@ [Synonyms
[Programmability
[Service Broker
@ [Storage
[[Security

To finish up dropping my original dbo.RDCLimitTier table and the system generated history
table | run the following commands from a SQL Server Query window:

USE [PSTest]
GO

/¥¥*¥%%% Object: Table [dbo].[RDCLimitTier] Script Date: 8/10/2016 9:07:45 PM

******/

DROP TABLE [dbo].[RDCLimitTier]
GO

/¥*¥¥¥%% Object: Table [dbo].[MSSQL‘Tempor‘alHistoryFor=725577623] Script Date:
8/10/2016 9:07:46 PM **¥¥¥k/

DROP TABLE [dbo]. [MSSQL_TemporalHistoryFor_725577623]

GO

Note: - You can’t drop the system generated history table alone when the system versioning
is turned on for the dbo.RDCLimitTier table.

Creating a Named Historical Temporal
table

Like | said earlier | don’t like default names for SQL Server objects. Therefore | want to show
you how to create a temporal table that has a name that we will define. There are two
different ways to create a temporal table that is named. The first method | will show you is
to let the SQL Server generate the column definitions based on the base table. Below is the
code to create a temporal table that we have named, but lets the system generate the
column definitions for the historical temporal table from the definition of the base table:
CREATE TABLE [dbo].[RDCLimitTier](
[UserID] [int] NOT NULL PRIMARY KEY CLUSTERED,

[TierID] [int] NOT NULL,
[BeginDate] datetime2 GENERATED ALWAYS AS ROW START NOT NULL,

[EndDate] datetime2 GENERATED ALWAYS AS ROW END NOT NULL,
PERIOD FOR SYSTEM_TIME ([BeginDate], [EndDate]))
WITH (SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.RDCLimitTierHistory));

Here you can see that we have created the temporal history table with a name by using the
HISTORY_TABLE clause on the CREATE TABLE statement. In this example | didn’t specify any
column definitions for the history table. The columns defined in the history table are the
same as the dbo.RDCLimitTier table.

= | J PSTest
[y Database Diagrams
[[System Tables
7 [FileTables
[External Tables
= 1 dbo.RDCLimitTier (System-Versioned)]
= 3 dbo.RDCLimitTierHistory (History)
= 34 Columns
£] UserlD (int, not null)
=] TierlD (int, not null)
=] BeginDate (datetime2(7), not null}
] EndDate (datetime2(7), not null)
[Constraints
@ [Indexes
¥ [Statistics
= 3 Columns
‘Y UserlD (PK, int, not null)
=] TierlD (int, not null)
Z] BeginDate (datetime2(7), not null)
=] EndDate (datetime2(7), not null}
@ [Keys
[Constraints
@ [Triggers
@ 4 Indexes
@ [Statistics

Summary

Creating a temporal data history table while you create your table is easy by just adding the
“SYTEM_VERSIONING’ clause to your create table statement. Keep in mind you can either
let SQL Server generate the history table name, or you can specify a history table name with
your “CREATE TABLE” statement. Next time you have a business need to track table records
changing over time, don’t write application code to do this, but instead build a history table,
using the temporal data table feature of SQL Server 2016.

