Parallel INSERT ... SELECT SQL Server 2016

Loading large amounts of data from one table to another is a common task in many
applications. Over the vyears, there have been several techniquesto improve the
performance of the data loading operations. SQL Server 2014 allowed parallelism for SELECT
... INTO operations. However, the users needed more flexibility, in terms of placement of
the target table, existing data in the target table, etc., which are not possible with the
SELECT ... INTO statement. Loading data into an existing table (with or without existing data)
through an INSERT ... SELECT statement has been a serial operation until SQL Server 2016.

SQL Server 2016, under certain conditions, allows an INSERT ... SELECT statement to operate
in parallel, thereby significantly reducing the data loading time for these applications. A
hidden gem!

Figure 1 illustrates loading time with and without parallelism. The test was performed on an
8-core machine (Figure 3 shows the degree of parallelism achieved), on a table with 50
million rows. Your mileage will vary.

INSERT ... SELECT with and without parallelism
15

12

Time (minutes)

without Parallelism with Parallelism
INSERT ... SELECT

Figure 1: INSERT ... SELECT with and without parallelism (SQL Server 2016)




Important to Know

Two important criteria must be met to allow parallel execution of an INSERT ... SELECT

statement.

1. The database compatibility level must be 130. Execute “SELECT name,
compatibility_level FROM sys.databases” to determine the compability level of your

database, and if it

is not 130, execute “ALTER DATABASE <MyDB> SET

COMPATIBILITY LEVEL = 130” to set it to 130. Changing the compatibility level of a
database influences some behaviour changes. You should test and ensure that your
overall application works well with the new compatibility level.

2. Must use the TABLOCK hint with the INSERT ... SELECT statement. For example:
INSERT INTO table_1 WITH (TABLOCK) SELECT * FROM table_2.

There are a few restrictions under which parallel insert is disabled, even when the above

requirements are met. We will cover the restrictions, and work arounds in the next sections.

How to know you are getting parallelism

The simplest way to check for parallelism is the execution plan. Figure 2 shows an execution

plan for an INSERT ... SELECT statement without parallelism.

100% -

3 Messages 27 Execution plan

Query 1: Query cost (relative to the batch): 100%
INSERT INTO [dho].[Users_Backup] WITH (TABLOCK) SELECT * FROHM [db

g
ot 5T
e Clustered Index Insert
= [Users_Backup] - [PX_Users_Bzckup]
Cost= O & = 3 =
Cost: 52 %

(2 Query executed successfully.

(=
=
Clustered Index Scan

(Users). [PK _Us
Cost: 6 %

Clustered Index Scan (Clustered)
Scanning a clustered index, entirely or only a range.
Physical Operation Clustered Index Scan
Logical Operation ~ Clustered Index Scan
Actual Execution Mode o _ Row
Est xecution Mode S ~ Row
Storage e T RowsStore
Actual Number of Rows 1000001
Number of RowsRead 1000001
Actual Number of Batches - 0
Estimated Operator Cost 5.59217 (8%)
Estimated I/O Cost 4401
Estimated CPU Cost o 110016
Estimated Subtree Cost 5.59217
Number of Executions 1 ¢
Estimated Number of Executions -
Estimated Number of Rows 1000000
Estimated Row Size . . ®B
Actual Rebinds S 0
Actual Rewind: 0
Ordered N S True
Noded B 1
Object
[PSTest).[dbo].[Users].[PK_Users]
Output List
[PSTest].[dbo].[Users].user_id, [PSTest].[dbo].[Users).login_id,

[PSTest].[dbo].[Users].node_id, [PSTest].[dbo). PSTest 00:00:01 Orow
[Users].full_name, [PSTestl.[dbo].[Users].disabled, [PSTest].
[dbo].[Users).create_time, [PSTest].[dbo]{Users].deleted

Figure 2: INSERT ... SELECT execution plan without parallelism



Under appropriate conditions, the same statement can use parallelism, as shown in Figure
3.

Clustered Index Scan (Clustered)
Scanning a clustered index, entirely or only a range.
100% -~
- Physical Operation o Clustered Index Scan
{13 Messsges & [Executionplan Logical Operati - Clustered Index Scan
Query 1: Query cost (relative to the batch): 100% Actual ExecutionMode ~ Row
INSERT INTO [dbo].[Users_Backup] WITH (TABLOCK) SELECT * FROM [dbo] .[Ust Estimated Execution Mode _Row
- 2 = Storage RowStore
@ ﬂ‘: '_:_Lt Lf‘: Number of Rows Read o 1000001
TR parsllelism Table Insert Clustered Index Scan Actual Number of Rows 1000001
CoendE (Gather Streams) (Users_Bzckup] (Users]. [PX_Us Actyal Number of Batches 0
- Cost: 1 % Cost: €4 % Cosz: 35 'Es_timiledo crator Cost_____ 262953 35%)
Estimated 1/0 Cost - 449201
Estimated Subtree Cost 4.62953
Estimated CPU Cost 013752
Estimated Number of Executions 1
Number of Executions 16 ¢
Esti dNumber of Rows 1000000
EstimatedRowSize ~~ 81B
Actual Rebinds - e — 0
Actual Rewinds 0
Ordered — . False
Node ID i 2
Object
[PSTest][dbo].[Users].[PK_Users]
Output List
[PSTest].[dbo].[Users].user_id, [PSTest].[dbo].[Users].login_id,
(2 Query executed successfully. [PSTest][dbo).[Users].node_id, [PSTest].[dba). 00:00:00 Orows

s et b R S e ) ity ens sme psiotrencecs TR
Real World Parallel INSERT...SELECT: What
else you need to know!

Here are the considerations and tips to keep in mind when using parallel INSERT...SELECT in
the real world.

Have Additional Indexes? Watch out!

It is important to note that the presence of a clustered index or any additional non-clustered
indexes on the target table will disable the parallel INSERT behaviour.

Watch out when IDENTITY or SEQUENCE is present!

It is quite common to find IDENTITY columns being used as the target table for
INSERT...SELECT statements. In those cases, the identity column is typically used to provide a
surrogate key. However, IDENTITY will disable parallel INSERT.



References

e https://technet.microsoft.com/en-
us/library/dd425070%28v=sql.100%29.aspx?f=255& MSPPError=-2147217396

e https://msdn.microsoft.com/en-us/library/bb510411(v=sql.120).aspx
e https://msdn.microsoft.com/en-us/library/bb510680.aspx




